Asymptotic Stability of a Jump-Diffusion Equation and Its Numerical Approximation

نویسندگان

  • Graeme D. Chalmers
  • Desmond J. Higham
چکیده

Asymptotic linear stability is studied for stochastic differential equations (SDEs) that incorporate Poisson-driven jumps and their numerical simulation using theta-method discretisations. The property is shown to have a simple explicit characterisation for the SDE, whereas for the discretisation a condition is found that is amenable to numerical evaluation. This allows us to evaluate the asymptotic stability behaviour of the methods. One surprising observation is that there exist problem parameters for which an explicit, forward Euler method has better stability properties than its trapezoidal and backward Euler counterparts. Other computational experiments indicate that all theta methods reproduce the correct asymptotic linear stability for sufficiently small step sizes. By using a recent result of Appleby, Berkolaiko and Rodkina, we give a rigorous verification that both linear stability and instability are reproduced for small step sizes. This property is known not to hold for general, nonlinear problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic stability of balanced methods for stochastic jump-diffusion differential equations

For a certain scalar linear jump-diffusion stochastic differential equation (jump SDE) the asymptotic stability (i.e. convergence to zero as time t → ∞) is considered. Using the jump SDE as a test equation, two types of ‘balanced’ numerical methods are evaluated with respect to computational stability. For both methods it is shown by an analysis that for sufficiently small time steps the numeri...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Semi-discretization Algorithm for Option Pricing in CEV Jump- diffusion Model

This paper proposes an option pricing technique we developed to approximate hedge jump risk under a CEV jumpdiffusion model. First, we established the options pricing model and the its partial differential equation by applying the Itô formula and non-arbitrage principle based on approximating hedge jump risk approximation; we next developed the concrete numerical algorithm for the equation by s...

متن کامل

Basket Options Valuation for a Local Volatility Jump-Diffusion Model with the Asymptotic Expansion Method

In this paper we discuss the basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated local volatility diffusion processes with systematic jumps. We derive a forward partial integral differential equation (PIDE) for general stochastic processes and use the asymptotic expansion method to approximate the conditional expectation of the stochastic vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2008